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We need to examine what happens to the value of a function, 

� 

f x( ) , as the value of x 
approaches (but not equal to!) some given value c (we symbolize this idea as x→ c ). Is 
the value of

� 

f x( )  getting “close” to a limiting value L  as x approaches c? More 
importantly for the theoretical validity of Calculus, how can we be specific about what 
we mean by “close.” 

 
An airplane approaches the airport for a landing. Gradually it gets lower and lower. 

Finally, with a squawk of burning rubber, the airplane’s landing gear touch the pavement, 
and the plane settles onto the runway. In a way, this landing is like the function 

� 

f x( ) = 1
x

. As x gets larger (at least to the right of x = 1), the value of 

� 

f x( ) , the “altitude” 

of the function, gets closer and closer to zero. However, unlike the airplane, 

� 

f x( )  never 
quite touches down on the x-axis runway. On the other hand, the value of 

� 

f x( )  can be as 
close to zero as you want just by choosing a large enough value of x. You may recognize 
this idea as an asymptote. The limit of f x( )  as x gets infinitely large ( x→∞ ) is zero. 

A different type of aberrant mathematical behavior is represented by the function 

� 

g x( ) = x2 − 4
x + 2

. If you graph this function, you would find it looks a lot like the line 

� 

y = x − 2. (This shouldn’t be surprising since 

� 

g x( ) = x2 − 4
x + 2

=
x + 2( ) x − 2( )

x + 2( )
= x − 2 .) The 

only problem with the graph is the point 

� 

−2, g −2( )( ) — mainly because 

� 

g −2( ) does not 
exist (that old division by zero thing)! While you can graph the points −2.1,g −2.1( )( )  and 

−2.001,g −2.001( )( ) , and the values of the function keep getting closer to –4 the closer x 
gets to 2, there is a one-point hole in the graph of 

� 

g x( )  exactly at the point x = –2. 

Intuitively, it is not hard to understand the idea that lim
x→∞

1
x
= 0  and lim

x→ −2

x2 − 4
x + 2

= − 4 . 

However, mathematicians do not trust intuition. They demand a rigorous proof. Can we 
develop specific criteria which we can use to prove the limit of a function? The idea is to 
look at the limit point. How close do we want to be to this point? Once we decide that, 
can we find an x value that will do the job? 

Let’s start by defining two distances. If the variable x approaches some value c, we 
will use 

� 

δ  to represent the distance between x and c. More specifically, 

� 

δ  = 

� 

x − c . The 
distance 

� 

ε will be the distance between the value 

� 

f x( )  and the proposed limit L or 
ε = f x( )− L . 



To prove lim
x→c

f x( ) = L , we need to show no matter how close we want to be to L, we 
can always find a way to get there. The value for ε , the distance of the function value 
from L, defines an interval around L: all points within the distance 

� 

f x( ) − L < ε . Now we 
must show that for that any 

� 

ε we pick, there is a 

� 

δ  guaranteed so that if you pick your x 
value within the interval defined by 

� 

δ  around c, or 

� 

x − c < δ , the value of 

� 

f x( )  will be 
guaranteed to be within the distance 

� 

ε of L. 
More formally, let f be a function defined on an open interval which contains the 

point c. (The actual value 

� 

f c( )  may or may not exist.) 
lim
x→c

f x( ) = L  
means that for every 

� 

ε > 0 , there exists a 

� 

δ > 0  such that if  

� 

0 < x − c < δ ,  then  

� 

0 < f x( ) − L < ε . 
In other words, if the function value goes to the limit L of a function as x approaches 

the value c, we can always get

� 

f x( )  within the distance 

� 

±ε of L by using a value of x 
within the interval x −δ , x +δ( ) . If the limit of function f exists at the point c, there must 
be a value 

� 

δ , a distance from point c, so that if we choose our x within that distance from 
c, 

� 

f x( )  will be within the distance 

� 

!  of L. If that limit L exists, we have to prove we can 
always find a small enough number, 

� 

δ , so that 

� 

f x + δ( )  will be within the distance, 

� 

ε, of 
the limit, L. Our task is to find the value of 

� 

δ  that will work. 
 

Example 6 (Finding a 

� 

δ  for a given value of 

� 

ε.  This is a rework of Ex. 6, page 73.) 
Given the limit  

lim
x→3

2x − 5( ) =1 

find 

� 

δ  such that 

� 

2x − 5( ) −1 < 0.01 Whenever 

� 

0 < x − 3 < δ . 
Solution: Using function notation for this problem, we are given

� 

f x( ) = 2x − 5 , and we 
want to show that as x goes to 3, the value of f x( )  will go to 1. (This is not surprising 
since f 3( ) = 1 . However, we need to prove it without calculating it right at 3. Our x is 
approaching 3, but not equal to it! 

Here we have been given 

� 

ε = .01. That is sort of a “target size.” Since L = 1 and 

� 

ε = .01, we have to get the function value within the interval 0.99,1.01[ ]—our target. Can 
we find a 

� 

!  so that 

� 

f x + δ( )  will be within that target interval around L? In other words, 
we want: 

� 

f x + δ( ) < L ± ε    or 

� 

f x + !( ) " L <# 
Since x is approaching 3, it is some distance !  away from 3. The function value at the 
point 3+δ  is f 3+δ( ) . Now we can fill in the blanks in the inequality: 
Criterium: 

� 

f x + δ( ) − L < ε  
x approaches 3 means: f 3+δ( )− L < ε  
L=1 and ε = .01 f 3+!( ) " 1 < .01 
We need to solve for 

� 

δ . Since 

� 

f x( ) = 2x −5, we can evaluate f 3+!( ) : 



 2 3+!( ) " 5#$ %&" 1 < .01 
Now solve by multiplying out: 6 + 2δ − 5 −1 < .01  
Simplify: 

� 

2! < 0.01 
 

� 

δ < 0.005  
Did we find the 

� 

δ  we need to make the function value within 0.01 of the limit 1? 
Let’s check. For convenience, just consider the positive case where 

� 

0 < δ < 0.005. Using 
a value of 

� 

!  less than .005 should make the inequality 

� 

f x + !( ) " L < 0.01 TRUE. (… and 
using 

� 

δ  > .005 greater should make it fail). For a test of this, use ! = 0.004 (Note that 
.004 < 0.005 , our criteria for 

� 

δ .). This means the result should be within ε = .01  of the 
limit 1, or the result should be less than 1.01. 
Calculate with δ = 0.004 : f 3+ .004( ) = f 3.004( ) = 2 3.004( )− 5 = 1.008  
Our answer is within .01 of the limit, 1: 1.008 <1+ .01= L + ε  
Conversely, if we use δ = 0.006 , (this δ  is greater than .005), the function value will be 
more than 1+ .01. 
Calculate: f 3+ .006( ) = f 3.006( ) = 2 3.006( )− 5 = 1.012 . Our check with a larger 
number fails because the answer is more than .01 larger than the limit, 1: 
1.012 >1+ .01= L + ε  
 
Example 7: (Page 73) 
Use the ε −δ  definition of limit to prove that 

lim
x→2

3x − 2( ) = 4  
(Note: ε −δ  definition  means we must find a δ such that if 

� 

0 < x − c < δ ,  then  

� 

0 < f x( ) − L < ε .) 
 
Solution: Using function notation for this problem, we are given f x( ) = 3x − 2 , and we 
want to show that as x goes to 2, the value of f x( )  will go to 4. Here we are not given a 
specific value of ε . We have to find a general relation between δ  and ε . More 
specifically, we must find a δ  such that when x is in the interval 0 < x − 3 < δ  it will 
guarantee that 0 < f x( )− 4 < ε  (or f x( )  will be within ±ε  of 4). 

Since x is approaching 2, we will use x = 2 +δ  in 0 < f x( )− 4 < ε , 
or: 0 < f 2 +δ( )− 4 < ε . 
Find f 2 +δ( ) : 0 < 3 2+!( ) " 2" 4 < #  
Simplify: 0 < 6 + 3δ − 2 − 4 < ε  
Simplify: 0 < 3δ < ε  

Solve for δ : 0 < δ < ε
3

 

Therefore, any value of ! <
"
3

 will work.  Since we have shown that we can always find 

a δ  the required size by dividing !  by 3, we have proved that lim
x! 2

3x " 2( ) = 4  



Example 8  Finding 

� 

!  for a given 

� 

! .  (This is a rework of Ex. 8, page 74.) 
Use the 

� 

! " # definition of a limit to prove that:   

� 

lim
x! 2

x2 = 4 
Solution:  We need to show that for every 

� 

! > 0 there must be a 

� 

! > 0 such that 
if 

� 

x ! 2 <"  then 

� 

x2 ! 4 <" . 
Instead of having a specific 

� 

!  margin given, we need to find a general rule for finding 

� 

!  in terms of 

� 

! . The technique, however, remains similar. Since the value of x is 
approaching 2, 

� 

!  will be x’s distance from 2. In finding a limit, we can’t use x = 2. The 
value of x is never 2, but it approaches 2—closely. Instead of 2, we’ll use the value 

� 

2+ !( ) as a replacement for x in 

� 

x2 ! 4 <" : 

Substituting: 0 < f 2+!( ) " 4 < #  

Evaluating: f 2+!( ) : 

� 

2+ !( )2 " 4 <# 

Squaring: 

� 

4 + 4! + ! 2 " 4 <# 

Simplifying: 

� 

4! + ! 2 <"  
Now with our advanced algebraic skills, we could solve this analytically for

� 

! . 
However, to show the limit exists, we are only trying to prove that such a 

� 

!  exists. We 
don’t have to know the very best one. All we have to do is find one that works. 

Let’s take what might be called a “physics” approach (to be fair, engineering and 
other disciplines also do this sort of thing). We are dealing with a small 

� 

! , certainly one 
that is less that one. Therefore: 

If 

� 

! <1, then 

� 

! 2 < ! . (Think about it. If ! = .2, ! 2 = .04) 
That means that 

� 

4! + ! 2 < 4! + ! = 5! . 

So if we make 

� 

5! < " , then certainly our 

� 

4! + ! 2 <" . 

With 

� 

5! < " , a value of 

� 

! <
"
5

 will work to put 

� 

x2 within “spitting distance” (a 

technical term from advanced calculus) of its limit, 4. 
 
Check:  Suppose we want 

� 

! = 0.01. 

Using the result 

� 

! <
"
5

 or 

� 

! <
0.01

5
= 0.002. That means a value 

� 

!  = 0.001 should give 

a value of 

� 

x2 that is 

� 

4 ± 0.01 or in the interval [3.99, 4.01]. In other words 

� 

2+ 0.001( )2 
should be in the interval [3.99, 4.01] — this is where you, as a student, grab your 
calculator to check. 

What if we use 

� 

!  = 0.003 (larger than our calculated δ )? Is 

� 

2 + 0.003( )2 within 
desired range? 

(Side Note: We don’t want to get too close to 

� 

δ  on the high side. Remember we took 
some liberties there to make it easier to find a 

� 

!  that worked. We did not find the optimal 
value for 

� 

! . There very well could be a value of 

� 

!  (but not too far away) that would still 
put us within 

� 

! -range of 4.) 



Remember, by finding a value of 

� 

!  that works, we have proven that 

� 

!  exists — for 

any value of 

� 

! , we can absolutely find a 

� 

δ . Here, our more general solution, 

� 

δ < ε
5

, shows 

that a 

� 

!  will exist for any value of 

� 

! . Therefore, we have shown no matter how close we 
want 

� 

f x( )  to be to L, we can get it there. Once we find this relation between !  and ! , 
we know: 

 

� 

lim
x! c

f x( ) = L . 
 

Definition of Limit 
Let f be a function defined on an open interval containing c (except possibly the point c 
itself) and let L be a real number. The statement 
 

lim
x! c

f x( ) = L  
 

means that for each ! > 0 , there exists a ! > 0  such that if 
 

0 < x ! c <" , then f x( ) ! L < "  


